
2020-08-24

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math., LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018-20 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Binary search

2
Binary search

Outline

• In this lesson, we will:

– Describe a binary search in terms of the high-low game

– Implement the binary search

– Consider the conditions necessary to stop looping

• We will be looking at different cases

3
Binary search

Searching sorted arrays

• Suppose an array is sorted,

 and you’d like to find an entry in that array

– You could use a linear search from a previous topic

• A linear search is necessary if an array is not sorted,

 for the entry you’re looking for may be anywhere

• Question: can we speed up the search if the array is sorted?

– Imagine if you had a book, and you had to find page 147

• If the book was 308 pages, would you start with page 1?

4
Binary search

Searching sorted arrays

• Remember the high-low game:

– Your friend has thought of a number between 0 and 99,

 and you have to guess that number

• Suppose you guess (0 + 99)/2 == 49

– In the off chance you’re correct, great!

– If your friend says “low”, you’re too low,

 so your next guess is (50 + 99)/2 == 74

– If your friend says “high”, you’re too high,

 so your next guess is (0 + 48)/2 == 24

– Note that we are using integer division, as used in C++

• Can we use this strategy with searching a sorted array?

2020-08-24

2

5
Binary search

Implementing the binary search

• Like our linear search,

 the binary search will have a similar function declaration

std::size_t binary_search(double const array[],

 std::size_t const capacity,

 double const value);

6
Binary search

Searching sorted arrays

• Suppose you are searching an array with capacity 100 for 9237.1

– The value could be anywhere between index 0 and 99

• Suppose you guess the index (0 + 99)/2 == 49

– Check if array[49] == value

• In the off chance this entry equals the value, great!

– Check if array[49] < 9237.1

• We’re too low, so we are restricted to 50 to 99

• Next time, inspect index (50 + 99)/2 == 74

– Otherwise, array[49] > 9237.1

• We’re too high, so we are restricted to 0 to 48

• Next time, inspect index (0 + 48)/2 == 24

7
Binary search

Implementing the binary search

• We will start by checking the array is sorted,

 and setting the bounds
 assert(is_sorted(array, capacity) == capacity);

 std::size_t lower_index{0};

 std::size_t upper_index{capacity - 1};

8
Binary search

Implementing the binary search

• We cannot use a for loop, so we’ll have to use a while loop

 – We’ll hold off on the condition
 assert(is_sorted(array, capacity) == capacity);

 std::size_t lower_index{0};

 std::size_t upper_index{capacity - 1};

 while (...) {

 }

2020-08-24

3

9
Binary search

Implementing the binary search

• First, we will calculate the average of the lower and upper indices

 assert(is_sorted(array, capacity) == capacity);

 std::size_t lower_index{0};

 std::size_t upper_index{capacity - 1};

 while (...) {

 std::size_t average_index{ (lower_index + upper_index)/2 };

 }

10
Binary search

Implementing the binary search

• Next, we will check if this entry contains what we are searching for

 assert(is_sorted(array, capacity) == capacity);

 std::size_t lower_index{0};

 std::size_t upper_index{capacity - 1};

 while (...) {

 std::size_t average_index{ (lower_index + upper_index)/2 };

 if (array[average_index] == value) {

 return average_index;

 }

 }

11
Binary search

Implementing the binary search

• If the entry at this point is too small

 – We’ll update the lower index
 assert(is_sorted(array, capacity) == capacity);

 std::size_t lower_index{0};

 std::size_t upper_index{capacity - 1};

 while (...) {

 std::size_t average_index{ (lower_index + upper_index)/2 };

 if (array[average_index] == value) {

 return average_index;

 } else if (array[average_index] < value) {

 lower_index = average_index + 1;

 }

 }

12
Binary search

Implementing the binary search

• Otherwise, the only other possibility is that the entry is too large

 – We’ll update the upper index
 assert(is_sorted(array, capacity) == capacity);

 std::size_t lower_index{0};

 std::size_t upper_index{capacity - 1};

 while (...) {

 std::size_t average_index{ (lower_index + upper_index)/2 };

 if (array[average_index] == value) {

 return average_index;

 } else if (array[average_index] < value) {

 lower_index = average_index + 1;

 } else {

 upper_index = average_index - 1;

 }

 }

2020-08-24

4

13
Binary search

While loop condition

• Now for the more interesting question:

 – When do we stop searching?
 assert(is_sorted(array, capacity) == capacity);

 std::size_t lower_index{0};

 std::size_t upper_index{capacity - 1};

 while (...) {

 std::size_t average_index{ (lower_index + upper_index)/2 };

 if (array[average_index] == value) {

 return average_index;

 } else if (array[average_index] < value) {

 lower_index = average_index + 1;

 } else {

 upper_index = average_index - 1;

 }

 }

14
Binary search

While loop condition

• Question: What is the necessary condition for the while loop?

– If we are searching for something in the array,

 no halting condition is necessary

• This algorithm is guaranteed to find the entry

• Thus, the condition would be
 while (true) {

 // Find the average and update accordingly

 }

15
Binary search

While loop condition

• Question: What is the necessary halting condition?

– What if we are searching for something not in the array?

• With every iteration of the loop where we don’t find the value, either

– The value of lower_index will be increasing, or

– The value of upper_index will be decreasing

16
Binary search

While loop condition

• Question: What is the necessary halting condition?

– What if we are searching for something not in the array?

Case 1

• Suppose that at one step, lower_index == upper_index

– If this is the case, average_index will equal this value,

 so if array[average_index] < value,

uppex_index == lower_index - 1

 and if array[average_index] > value,

lower_index == upper_index + 1

• In either case, lower_index > upper_index

2020-08-24

5

17
Binary search

While loop condition

• Question: What is the necessary halting condition?

– What if we are searching for something not in the array?

Case 2

• Suppose that at one step, lower_index + 1 == upper_index

– If this is the case, average_index will equal lower_index,

 so if array[average_index] < value,

uppex_index == lower_index - 1

 and if array[average_index] > value,

lower_index == upper_index

• In the first case, lower_index > upper_index

 and in the second, we are back to Case 1

18
Binary search

While loop condition

• Question: What is the necessary halting condition?

– What if we are searching for something not in the array?

Case 3

• Suppose that at one step, lower_index + 2 == upper_index

– If this is the case, average_index will equal lower_index + 1,

 so if array[average_index] < value,

uppex_index == lower_index

 and if array[average_index] > value,

lower_index == upper_index

• In both possibilities, we are back to Case 1

19
Binary search

While loop condition

• Thus, we should stop looping as soon as

lower_index > upper_index

• Thus, we should continue iterating so long as:
while (lower_index <= upper_index) {

 // Find the average and update accordingly

}

return capacity;

20
Binary search

Our binary search
std::size_t binary_search(double const array[], std::size_t const capacity,

 double const value) {

 assert(is_sorted(array, capacity) == capacity);

 std::size_t lower_index{0};

 std::size_t upper_index{capacity - 1};

 while (lower_index <= upper_index) {

 std::size_t average_index{ (lower_index + upper_index)/2 };

 if (array[average_index] == value) {

 return average_index;

 } else if (array[average_index] < value) {

 lower_index = average_index + 1;

 } else {

 upper_index = average_index - 1;

 }

 }

 return capacity;

}

2020-08-24

6

21
Binary search

A test

• Here is a test:
int main() {

 std::size_t const CAPACITY{5};

 double data[CAPACITY]{ 0.0, 1.2, 1.5, 2.7, 4.6 };

 for (int k{0}; k <= CAPACITY*10; ++k) {

 double x{ k/10.0 };

 std::size_t index{ binary_search(data, CAPACITY, x) };

 assert((0 <= index) && (index <= CAPACITY));

 if (index == CAPACITY) {

 std::cout << x << " not found" << std::endl;

 } else {

 std::cout << x << "\t== data[" << index << "] = "

 << data[index] << std::endl;

 }

 }

 return 0;

}

22
Binary search

A test

• Here is the output:

– Note that each value was found in the appropriate location:
double data[5]{ 0.0, 1.2, 1.5, 2.7, 4.6 };

0 == data[0] = 0
0.1 not found
0.2 not found
0.3 not found
0.4 not found
0.5 not found
0.6 not found
0.7 not found
0.8 not found
0.9 not found
1 not found
1.1 not found
1.2 == data[1] = 1.2
1.3 not found
1.4 not found
1.5 == data[2] = 1.5
1.6 not found
1.7 not found
1.8 not found
1.9 not found

2 not found
2.1 not found
2.2 not found
2.3 not found
2.4 not found
2.5 not found
2.6 not found
2.7 == data[3] = 2.7
2.8 not found
2.9 not found
3 not found
3.1 not found
3.2 not found
3.3 not found
3.4 not found
3.5 not found
3.6 not found
3.7 not found
3.8 not found
3.9 not found

4 not found
4.1 not found
4.2 not found
4.3 not found
4.4 not found
4.5 not found
4.6 == data[4] = 4.6
4.7 not found
4.8 not found
4.9 not found
5 not found

23
Binary search

Weakness in our test

• Did any of you notice a weakness in the test?
int main() {

 std::size_t const CAPACITY{5};

 double data[CAPACITY]{ 0.0, 1.2, 1.5, 2.7, 4.6 };

 for (int k{0}; k <= CAPACITY*10; ++k) {

 double x{ k/10.0 };

We never searched for a value less than the first entry!

24
Binary search

Weakness in our test

• We can fix this:
int main() {

 std::size_t const CAPACITY{5};

 double data[CAPACITY]{ 0.3, 1.2, 1.5, 2.7, 4.6 };

 for (int k{0}; k <= CAPACITY*10; ++k) {

 double x{ k/10.0 };

– This should indicate 0, 0.1 and 0.2 are not found

– On my computer, however, I get:

Segmentation fault (core dumped)

2020-08-24

7

25
Binary search

Weakness in our implementation

• If both lower_index and upper_index equal 0,

 average_index = 0,

 and if array[0] > value, then

upper_index = 0 - 1;

• Problem: std::size_t is unsigned, so 0 - 1 causes a carry,

 so now upper_index == 0xffff···f

• How do we test for this?

– Note that this maximum value is greater than or equal to the
capacity of the array

– Thus, if upper_index == 0xffff···f,

 then upper_index >= capacity

26
Binary search

Weakness in our implementation

• Thus we should not continue if either of these conditions is true:
 lower_index > upper_index

 upper_index >= capacity

• Thus we should continue if both of these conditions are false:
 lower_index > upper_index

 upper_index >= capacity

• Thus we should continue if both of these conditions are true:
 lower_index <= upper_index

 upper_index < capacity

27
Binary search

Our complete implementation
std::size_t binary_search(double const array[], std::size_t const capacity,

 double const value) {

 assert(is_sorted(array, capacity) == capacity);

 std::size_t lower_index{0};

 std::size_t upper_index{capacity - 1};

 while ((lower_index <= upper_index)

 && (upper_index < capacity)) {

 std::size_t average_index{ (lower_index + upper_index)/2 };

 if (array[average_index] == value) {

 return average_index;

 } else if (array[average_index] < value) {

 lower_index = average_index + 1;

 } else {

 upper_index = average_index - 1;

 }

 }

 return capacity;

}

28
Binary search

What type of error is this?

• This error in our function was not a problem with binary search

– If upper_index could take on the value -1,

 the implementation would work as expected

– It is because the index is unsigned that this error appears

• We call such an error a semantic error

– We expect integer arithmetic to work as it does in the real world

– This is not what happens with unsigned integers in C++

2020-08-24

8

29
Binary search

Another weakness

• Interesting observation:

– This fix also fixes the problem if capacity is 0

– The initial value of upper_limit is 0 - 1

• We seem to have taken care of two weaknesses with one fix

30
Binary search

A better test

• Our test requires that we inspect the output

– Can we write a test that does not require us to do so?
int main() {

 std::size_t const CAPACITY{5};

 double data[CAPACITY]{ 0.3, 1.2, 1.5, 2.7, 4.6 };

 std::size_t found_count{0};

 for (int k{0}; k <= CAPACITY*10; ++k) {

 double x{ k/10.0 };

 std::size_t index{ binary_search(data, CAPACITY, x) };

 assert((0 <= index) && (index <= CAPACITY));

 if (index != CAPACITY) {

 assert(data[index] == x);

 ++found_count;

 }

 }

 assert(found_count == CAPACITY);

 return 0;

}

31
Binary search

How often must we search the array?

• Question:

 What is the maximum number of entries of the array that we
 must inspect?

32
Binary search

How often must we search the array?

• Suppose the array has a capacity of 127

– In this case, we must search entries from 0 t0 126

• We are searching 127 entries

– If it is not at index 63

• We must search the indices from 0 to 62 or 64 to 126

– In both cases, we are restricted to searching 63 entries

• In the first case, if it is not at index 31

– We must search the indices from 0 to 30 or 32 to 62

• In the second case, if it is not at index 95

– We must search the indices from 64 to 94 or 96 to 126

– In all four cases, we are restricted to searching 31 entries

– Note these values are 27 – 1 = 127, 26 – 1 = 63, 25 – 1 = 31,

– You may correctly deduce that this pattern will continue:

24 – 1 = 15, 23 – 1 = 7, 22 – 1 = 3, 21 – 1 = 1

2020-08-24

9

33
Binary search

How often must we search the array?

• In your course on algorithms and data structures,

 you will prove that a binary search will insepct no more than

log2(n) + 1

 entries of the array

• A linear search on an array of capacity one million

 may require up to searching one million entries

• A binary search on a sorted array of capacity one million

 will require no more than log2(1000000) + 1 = 20.93156857

– That is, inspecting no more than 20 entries of the array

34
Binary search

Summary

• Following this presentation, you now:

– Understand how to implement a binary search

– Are aware that you must thoroughly test your implementation

– Understand that there may be issues with implementing the
algorithm as described

• In our case, for an unsigned integer, we calculated 0 - 1,

 which resulted not in -1, but rather at 0xfff···f

– Are aware that a binary search is relatively fast compared to a linear
search, but the array must be sorted

35
Binary search

References

[1] Wikipedia,

 https://en.wikipedia.org/wiki/Binary_search

[2] Dictionary of Algorithms and Data Structures (DADS)

 https://xlinux.nist.gov/dads/HTML/binarySearch.html

36
Binary search

Acknowledgments

Proof read by Dr. Thomas McConkey and Charlie Liu.

2020-08-24

10

37
Binary search

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

38
Binary search

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

